

13.7V Output DC/DC Converter, Box Type Package

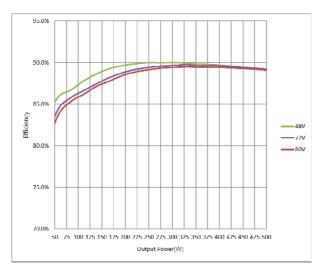
FEATURES

- Wide input voltage range, 32~96V
- 500W Output
- Full Load Efficiency up to 89.5% @48Vin and 72Vin
- Parallel Connection of multiple units
- Box type package with metal base plate
 - Package Dimension: 198.0x113.0x45.0mm (7.80"x4.45"x1.77")
 - Operating Temperature Range 40°C to +90°C
- Input Reverse Polarity Protection
- Input UVLO, Output OCL, Short circuit protection, OVP, OTP
- Enable on/off
- 2250VDC Isolation
- IP67 protection(With fully assembled mating connector)
- RoHs Compliant
- ISO 9001, ISO 14001 certified manufacturing facility
- IEC/EN/UL60950-1, IEC/EN/UL62368-1, CE Mark
- EMC compatible: EN12895-2015, EN55011, EN55014-2, CISPR11 ClassA

The EC-0098 (A code without parallel function,B code with parallel function), a wide input voltage range of 32~96V, and single isolated output converter, is the latest product offering from a world leader in power systems technology and manufacturing. Such box type DC/DC converter can provide 500W, 13.7V regulated DC output voltage with full load efficiency up to 89.5% @72Vin; The EC-0098 offers input UVLO, output over current limit, short circuit, output over voltage, over temperature, and input reverse polarity protections. It has parallel function; and allows a wide operating temperature range of -40°C to +90°C. With creative design technology and optimization of component placement, this converter possess outstanding electrical and thermal performance, as well as high reliability under extremely harsh operating conditions. The The EC-0098 meets IP67 protection (refer to "water protection level" specification).

INPUT CHARACTERISTI	CS					
Item	Condition	Min.	Тур.	Max.	Unit	
Continuous Input Voltage		32	48	96	VDC	
Input Under-Voltage Lockout, Turn-On Voltage Threshold		29	30	31	VDC	
Input Under-Voltage Lockout, Turn-Off Voltage Threshold		27	28	29	VDC	
Lockout Hysteresis Voltage		1	2	3	VDC	
Maximum Input Current	Vin=32V, 100% Load		18	19	А	
No. 1 and James Comment	Vin=48V		80		mA	
No-Load Input Current	Vin=72V, 80V		40		mA	
Off converter input current	Vin=48V, enable off		6		mA	
Reflected input ripple current	Vin=48V, peak to peak			0.2	Α	
Max Reverse Polarity Input Voltage				96	VDC	
Max Inrush current				10	Α	
Internal Input Fuse	al Input Fuse 500V/30A Fast-acting fuse					

Condition	ns	Min.	Тур.	Max.	Unit
		. , , , ,		Α	
				A	
		13.7		V	
for A code	lo=36.5		13.7		V
	lo=0		14.35		V
for B code lo=38.5			13		V
Vin=48V, Io=100%, r					
20MHz bandwidth, Co=1	μF ceramic, 10μF		120	240	mV
Vin=48V, Io=100%, F	RMS, 20MHz		35	70	mV
			33	70	1110
			140	280	mV
			45	90	mV
banawath, co rpi ceran	mo, ropi tamatam	39	45	51	Α
only for B c	ode		+		
		650	800	mS	
		050	100		
10%Vo		250	400	mS	
From 10%Vo to		160	300	mS	
			17	19	V
Positive voltage step, 7		250	500	mV	
dynamic, 0.1A/us		250 50	500	IIIV	
Nagetive voltage step, 5		250	500	mV	
dynamic, 0.1A/us	slew rate		250	300	IIIV
ximum Output Capacitance				10000	μF
Output overshoot				3	%
Vin=48∖	/		89.5		%
Vin=72∖	/		89.5		%
Vin=48∖		90		%	
Vin=72\		89.5		%	
TICS					
	ns	Min.	Typ.	Max.	Unit
				VDC	
Ouput to C			550	VDC	
Ouput to O		+	550	ΜΩ	
		10			
		10	5000		
		10	5000		pF
Popoplete © 40°C in-	sludo Alumiaum	10	5000 175		pF
Baseplate @ 40°C, inc		10		131400	
Baseplate @ 40°C, inc capacito 72Vin, Baseplate	r	137130		131400	pF KHz
	For A code for B code for B code Vin=48V, Io=100%, p 20MHz bandwidth, Co=1 tantalum Vin=48V, Io=100%, p bandwidth, Co=1µF ceran Vin=72V, 80V, Io=100% 20MHz bandwidth, Co=1 tantalum Vin=72V, 80V, Io=100% bandwidth, Co=1µF ceran only for B c Vin=48V,full load, from Threshold to 1 Vin=48V,full load, from 10%Vo From 10%Vo to Positive voltage step, 7 dynamic, 0.1A/us Nagetive voltage step, 5 dynamic, 0.1A/us Vin=48V Vin=72V Vin=48V Vin=72V STICS Condition	For A code For B code for A code for B code for B code for B code Vin=48V, Io=100%, peak to peak, 20MHz bandwidth, Co=1µF ceramic, 10µF tantalum Vin=48V, Io=100%, RMS, 20MHz bandwidth, Co=1µF ceramic, 10µF tantalum Vin=72V, 80V, Io=100%, peak to peak, 20MHz bandwidth, Co=1µF ceramic, 10µF tantalum Vin=72V, 80V, Io=100%, RMS, 20MHz bandwidth, Co=1µF ceramic, 10µF tantalum Vin=72V, 80V, Io=100%, RMS, 20MHz bandwidth, Co=1µF ceramic, 10µF tantalum only for B code Vin=48V,full load, from Vin=Turn-on Threshold to 10%Vo Vin=48V,full load, from Enable=ON to 10%Vo From 10%Vo to 90%Vo Positive voltage step, 75% to 50% load dynamic, 0.1A/us slew rate Nagetive voltage step, 50% to 75% load dynamic, 0.1A/us slew rate Vin=48V Vin=72V Vin=48V Vin=72V	For A code	For A code	For A code


ENVIRONMENTAL SPECI	FICATIONS						
Parameter	Conditions	Min.		Max.	Unit		
Storage Temperature Range		-40			$^{\circ}\!\mathbb{C}$		
Operating Temperature Range	Baseplate	-40		+90	°C		
Over Temperature Protection	NTC Temperature	118			°C		
Humidity (non condensing)	·		95	% RH			
Thermal Shock Test	Temperature range:-40~125 °C Thermal rate: 20°C /min Dwell time: 60mins Total cycle: 300cycles	ISO 16750-4					
Submersion test	Total cycles: 10 Dwell time at Tmax: 1h Transition duration: <20s Testfluid: De-ionized water,5% NaCl Water Temperature:< 4°C Immersion Time: 5 mins	ISO 16750-4					
Water Protection Level	With fully assembled mating connector	IP67					
Vibration	Sine wave 1.Frequency (Hz) amplitude acceleration 5 – 9 HZ ±15 mm 15-200 HZ 10G 2. Sweep rate 1 Oct / min. 3. Duration 50 Cycles.	IEC 60068-2-6: Sine-wave vibration, test Fc					
Mechanical Shock	50G/11ms 3Shocks for each direction	IEC 60068-2-27: Shock, half sine, test Ea:					
Bump	40G/6ms 1000 Shocks for each direction						
Salt Spray Test	Operating /no load 1. Salt Spray Concentration:5%; 2. Test Temperature:35°C; 3. Volume of spray:1~2ml/hour/80cm2; 4. PH:6.5~7.2; 5. Test Time:96hours 6. Tolerance: Salt Spray Concentration (±1%); Test Temperature: ± 2°C;	IEC 60068-2-11:Test Ka					
Emission	30-1000MHz 34-45dBuV/m	EN12895-2015					
Immunity	20V/m /27-1000MHz AM; 3V/m /1-2GHz AM; 1V/m /2-2.7GHz AM EN12895-2015,	EN61000-4-3					
ESD	Direct: ±8KV; Air: ±15KV EN12895-2015,	EN61000-4-2					

NOTES

- 1 Specifications typical at Ta=+25°C, nominal input voltage and rated full load output current unless otherwise noted.
- 2 Specifications are subject to change without notice.

ELECTRICAL CURVES

Figure 1: Efficiency vs. Output Power @ Vin=48V,72V,80V

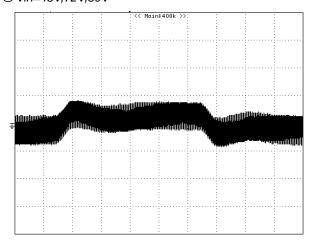


Figure 3: Dynamic response to load step 50% to 75% with 0.1A/uS slew rate at 72Vin CH1:VOUT, 200mV/div, 200uS/div

Figure 5: Output ripple & noise at 72Vin, 100% lout CH1:VOUT, 100mV/div, 5uS/div

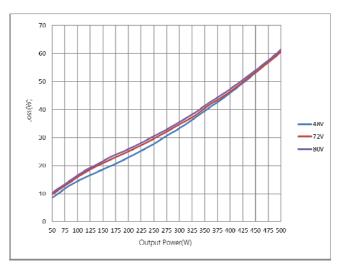
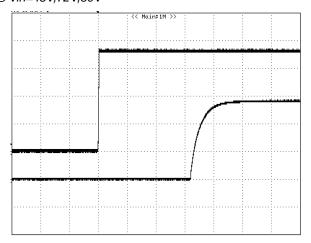
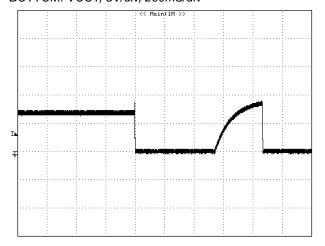


Figure 2: Loss vs. Output Power @ Vin=48V,72V,80V

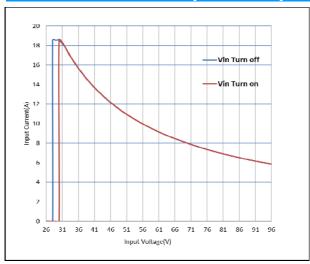

Figure 4: Vout start up with Vin on at 72Vin,100% lout, TOP:VIN, 20V/div, 200mS/div BOTTOM: VOUT, 5V/div, 200mS/div

Figure 6: Output over voltage protection at 72Vin,100% lout CH1:VOUT, 10V/div, 100mS/div

ELECTRICAL CURVES (continous)

Figure 7: Input current vs. Input voltage @Full load

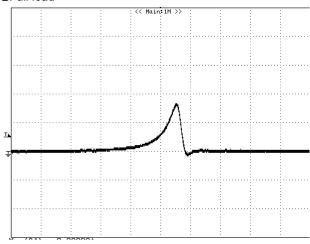
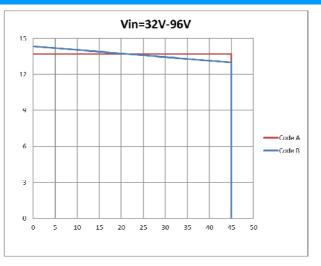



Figure 9: Inrush current @ Vin=72V CH1:lin, 2A/div, 200nS/div; Max current 3.4A

Figure 8: Output voltage vs. Output current OCL Performance

FEATURES DESCRIPTIONS

Output Over-Current Limit and Short Protection

The modules include internal output over-current limit (OCL) and short circuit protection (SCP) circuits, the OCL set point is lower than that of the SCP; The response of SCP circuit is much fast than that of the OCL circuit. The slowly increase of the output current will let module enter OCL protection when the current exceeds the OCL set point, while the fast increase of the output current will let module enter SCP when the current exceeds the SCP set point.

When the modules enter OCL protection, the output voltage will decrease while the output current is kept constant, the output voltage will soft start to set point when the overload condition is removed.

The module will enter hiccup mode when it triggers the SCP set point. The module will try to restart after shutdown. If the overload condition still exists, the module will shut down again. This restart trial will continue until the overload condition is removed.

Output Over-Voltage Protection

The power module includes an internal output over-voltage protection(OVP) circuit, which monitors the voltage on the output terminals. If this voltage exceeds the OVP set point, the module will shut down, and then restart after a fixed delay time (hiccup mode), please refer to figure 6 for detail.

Over-Temperature Protection

The over-temperature protection consists of circuitry that provides protection from thermal damage. If the temperature exceeds the preset temperature threshold the module will shut down, and all components will not exceed their absolute maximum temperature ratings. The module will restart after the temperature is within specification.

Remote On/Off

Version A/B has Enable control function. This Enable PIN is designed on the primary side of converter, the converter will turn on when the Enable PIN connected to VIN+ or floating, and turn off when the Enable PIN connected to VIN-.

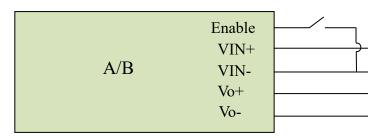


Figure 10: suggested Enable connection

Input Reverse Voltage Protection

The input reverse voltage protection is provided by an diode on the input line, the standoff voltage for the reverse protection shall be no less than -96V.

Parallel connection of multiple units(only for B code)

Two units parallel operation is veriyed, please contact us if more than two units need to be paralleled. While paralleling multiple units, the impedance of the cables from unit to junction point of each unit should be within $\pm 5\%$ of each other. Before all the parallel module ynished start up, the total load current should be lower than the rated current of 1 module.

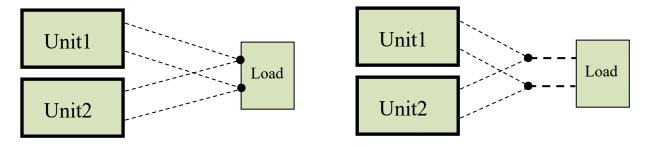


Figure 11: suggested parallel connections

THERMAL CONSIDERATION

The thermal curve is based on the test setup shown as figure 12. The module is mounted on an liquid cooling plate and cooled by cooling liquid(It can also be air cooling with heatsink at client side).

Figure 13 shows the location to monitor the temperature of the module's baseplate. The baseplate temperature in thermal curve is a reference for customer to make thermal evaluation and make sure the module is operated under allowable temperature. (Thermal curves shown in Figure 14 are based on different input voltage).

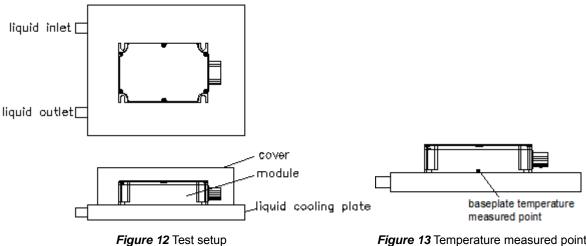


Figure 13 Temperature measured point

THERMAL CURVE

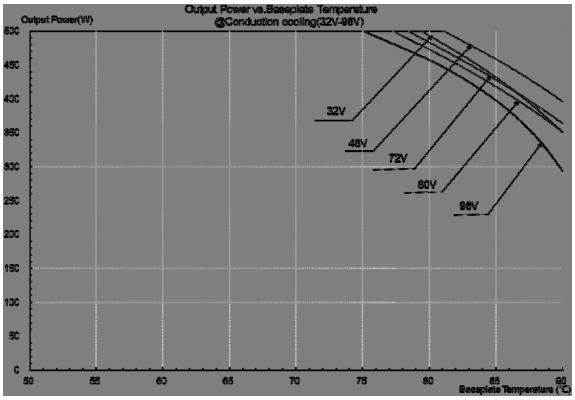
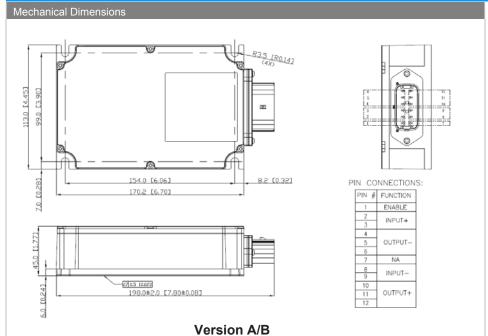
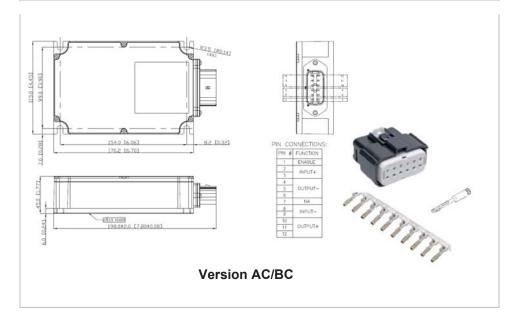



Figure 14: Output Power vs. baseplate temperature

MECHANICAL DRAWING



- All dimensions in mm (inches)
- > Tolerance:X.X±0.5 (X.XX±0.02) X.XX±0.25 (X.XXX±0.010)
- > Connector:

MOLEX P/N: 19429-0047

(mating connector:

housing :molex 0194180027 X1 terminal: 0194200001 X11 plug :194170119 X1 Pin7 need fill with plug)

- All dimensions in mm (inches)
- Tolerance:X.X±0.5 (X.XX±0.02)
 X.XX±0.25 (X.XXX±0.010)
- Connector:

MOLEX P/N: 19429-0047

(mating connector:

housing :molex 0194180027 X1 terminal: 0194200001 X11 plug :194170119 X1 Pin7 need fill with plug)

PHYSICAL OUTLINE

Case Size : 198.0x113.0x45.0mm (7.80"x4.45"x1.77")

Case Material : ADC12

PART NUMBERING SYSTEM								
						A		С
Form Factor	Input Voltage	Number of Outputs	Product Series	Output Voltage	Output Current	Option Code		Option Fitting
Box	32V~96V	Single	High	13.7V	36.5A			Connector Kit
			Power			A Without parallel function		With mating connector
						В	With parallel function	With mating connector

RECOMMENDED PART NUMBER							
Input Voltage Range	Input	Output		EFF @72VIN 100% LOAD			
(A/AC)	32V~96V	13.7V 36.5A		89.5%			
(B/BC)	32V~96V	13V	38.5A	89.5%			